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ON THE INVESTIGATION OF THREE-DIMENSIONAL FLOWS OF 
PERFECT GAS IN "NARROW" DUCTS* 

A. N. KRAIKO and V. A. SHIRONOSOV 

A system of integral and differential equations and relations is obtained for strong 
d&continuities by averaging with respect to variable y of a cylindrical system of 
coordinates SYrp . The system defines steady and unsteady three-dimensional flows 
of perfect (inviscid and non-heat-conducting) gas in ducts of a class that is im- 
portant in applications. Two walls of such ducts Stand X-are close to surfaces of 
revolution and the distance between them is equal to the remainder'@-Y-e (@-I- y-)/Z, 
where Y= Y*@,@ are equations that define Cf. The ensuing reduction of the number 
of independent variables makes possible mobile numerical simulation, as will be 
illustrated on examples in which linearized and complete (nonlinear) variants of 
the obtained system are used. The method of derivation of approximate equations 
is similar to that used for obtaining two-dimensional equations for the "variable 
height" layer in turbine blading flows. This obviously results in the congruence 
of the respective equations. 

1. Let us consider a narrow duct of the type shown in Fi.g.1, where the orientation of 
normals to x&is almost everywhere close to the direction of the y-axis. The last constraint 
together with the stipulated narrowness of the duct means that 

(1.1) 

The words "almost everywhere" relate to the second and third of these conditions which 
may be violated in the small neighborhood g, of the intersection line (junction) of Z+ and 
z-. The smallness of that neighborhood ensures the closeness ofZ*to a surface of revolu- 

tion, although only with respect to y but not to y,. For long ducts the second of conditions 
(1.1) does not imply smallness of variations of@and h along 
the whole (or a considerable part) of the duct length. In 
addition to the above conditions we introduce a constraint on 
the shape of the strong discontinuity surfaces. We confine 
the analysis to flows for which 

D,"Z< D,"Z ,- y-"D$a (1.2) 

where D”(t,x,cp, y) = 0 is the equation of the discontinuity 
surface, f is the time, and the subscripts denote respective 
partial derivatives. 

Fig.1 It is shown below that by virtue of the condition of 2* 
impermeability and of inequalities (1.1) and (1.2), the in- 

equality V"<u" + w2, in which a, u and w are the X-, y- and q-components of the velocity 
vectorQ,issatisfied everywhere, except possibly in the small neighborhoods g,,. This enables 
us to determine thermodynamic parameters (pressure p, density p, specific entropy s, in- 
ternal energy e, enthalpy i=e+pip, etc.), as well as components u and w independently 
of i'. It is convenient to use the integral laws of conservation of the mass of streams, X- 
components of moments, and of the moment of moments and of energy, as the basis for the 
derivation of respective equations. These laws are of the form 

(1.3) 

d . .a , 

x- us YPW dQ i- 
!.’ 

jjyp!~Qndo-t_jjypn,do=O, ~SjjP(2e+Q2)dn+jjp(2i+Q2)Q,da=0 
(I 0 $2 cl 

where !? is an arbitrary fixed volume bounded by the closed surface s, free of any bodies in- 
side it, n is the unit vector of the normal to 0 with components % nyr and n,, Q,,= Q.n is 

- 
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the normal to (J projection of Q and u = 1 Q I. As Q we take the surface formed by the duct 
walls z* and the "side" surface u". We orient e0 so that n, = 8 on uO, although otherwise 
its position is arbitrary. We introduce besides the true value of any parameter @, its mean 
value 

In particular 
dependent of Y and 
satisfy conditions 

(1.4) 

(y> = Y =(y+ -t y-)/2. By definition @ = <@) + S@(1? r,cp,y) with <(b> in- 
the integral of &CD over the duct height is zero. For ducts and flows that 
(1.1) and (1.2) we have S@<(@}. Because of this the formulas 

<'F (R, . . .1 cf,,)) = Yf cm>, . ., @,)) (1.5) 

are valid within an error of the order of (C~CD)~ and h&D,. 
We carry out integration in (1.3) with respect to y over the volume bounded by the sur- 

face c defined above. We take into consideration the condition of z* impermeability, inequal- 
ities (l.l), and formulas (1.4) and (1.5), and neglect in the obtained equations v which is 
small in comparison with CJ = 1/u" + UJ*. If we then omit the averaging symbol and substitute 
Y for Y, since the former is not henceforth used in its original sens, Eqs. (1.3) assume 

the form 

-%- ' jjpl:dxdq- jp(uFdv-wkdz) =O 
(1.6) 

d 

-x jjpuFdxd~-j{~uj~Fd~-wkdx).-PFd~) -jjIpF,z-t(P+-p-)yysidxd~=O 
4 6 G 

d 

-27 sj pwyF dx dv - j iFwY (UF dq - lob dx) - pF dxl - j j jP& + (P’ - P-) YY,) dx dV = 0 

G &? L: 

z ’ jj~(~~-~q~)Fdxd~-j~(2~~q2)(~Fd~-~hdx)=0 
G B 

where G is the projection of D on the plane of variables xcp, g is the boundary of G, F = yh, 
andp* are values of p on Z* , respectively. It is also assumed on the basis of the equation 
of state that e and, consequently, i are known functions of p and p. It should be noted that, 
although we deal with mean parameter values, the formulas that are valid for actual values are 
applicable here by virtue of fl.Sf . 

In addition to the equations of state we need the expression for the difference P+ --Pm 
for closing the derived system. To obtain that expression (the condition of "radial equili- 
brium") we proceed as follows. Taking into account the constraint on the orientation of 
possible disccntinuities defined by (1.5) I we integrate the differential equation for the 
radial component of momentum over the duct length. Proceeding as previously and omitting the 
averaging symbol, we obtain 

i!!!!.$ + (p+ - p-) y + ph (v” - w2) = 0 (1.7) 

In conformity with fl.lf, (1.2),and the condition of impermeability of Z*:U- uy,+ U.&Y, 
and, consequently, ~2 is almost everywhere smaller than u? and 102, a feature that was al- 
ready taken into account in the derivation of (1.6). By virtue of this and of the reasonable 
assumptions about the order of magnitude of derivatives in (1.7) we obtain the required con- 
dition 

(p+ - p-jy = pw*h 1l..8) 

which together with the equation of state closes (1.6). 
Equations (1.6) and (1.8) admit on the one hand independent scales for z and y, and on 

the other fox h. Hence, when conditions (l.l), which ensure the validity of the described 
approximation, are satisfied, we have similarity of flows with the same distributions of 
hlh,= fh(rp,ci X) and yi X = fy((p,xiX), where fh and f” are functions of own arguments, and 
X = z1 is the duct length. Henceforth the superscript zero (unity) will denote parameters in 

the inlet (outlet) cross section of the duct. This relation extends the similar property of 
flows in ducts that can be considered in a quasi-one-dimensional approximation, when only the 
distribution of relative areas of cross sections pi fiO Over 11 X is important. 

The conditions at discontinuities obtained in the conventional way from (1.6) coincide 
with those for actual parameters. Thus, if D (t, x, 4p) s D” (t, x, (p, y) = 0 with Y (5, y') % (y' + y-)12 
is the equation of discontinuity and d is its velocity along the normal to itself (intexms 
of Dt,D, ( and D,), then on shock waves 

]P f% - d)l = 0, Ip + p (qn - d)3 = 0, Iq,l = 0, l2i + (9% - d)21 = 0 
(1.9) 

Here and in what follows [@,I = Q+_@_ is the difference of @ on the two sides of the discont- 
inuity, qn and qr are components of q, respectively, normal and tangent to the discontinuity, 
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which in this case are determined in terms of U and W. At contact (tangential) discontinuit- 

ies we similarly have 

IpI = 0, (qn - d)* = 0 (1.10) 

Finally, the differential equations which follow from(l.6) and (1.8) and are valid in 

the subregion of parameter continuity assume, after some transformations, the form 

Lls~+P(~+t~)+%(uF,+Whg)=O, Lar$+$~-$y.=O, Lz-_$$$+-O (1.11) 

L,E-&+ (&++-o +;++.E+ :+, 

where didt is the operator of total differentiation with respect to time along the particle 

trajectory (for averaged stream), y = yw, and T is the absolute temperature. The second form 

of equation L, = 0 is obtained by using the thermodynamic relation between the differentials 

of s, i, and p. Incidentally, that equation which is of a characteristic form ensures the 

constancy of entropy in a particle and in subregions of continuous flow. 

2. When the flow is steady, the first term of operator dldt vanishes, and it is then 

expedient to rewrite system (1.11) in the form 

L1~~~(L1-~LL,)~$q~ ++q +~(~-yy5~)+~(F,t-~~,)=O (2.1) 

,,~~,,,-11L~-$(5~--~)-Ile(~+$~)- 

$y.=o, L:PzLe++L3++L4&$ ++g=o, L,“+L,E~+$+o 

where M = q/a is the Mach number, a = J//pip/ (1 -pi,) is the speed of sound, & = (ai / @)p, i, = 

(%/5p),, and 5 = W/U defines the directionofthe "two-dimensional" vector q, and1 = i + q2/2 
is the total enthalpy. In (2.1) not only the last equation but, also, the last but one are 

of the characteristic form that ensures the constancy of I on a streamline (dmi dz = c/y is 

the equation of a streamline). The type of subsystem of the first two of Eqs. (2.1) depend 

on M. When M<l the system is elliptic and when M> 1 it is hyperbolic. In the second 

case every point of the "flow plane" Xcp is traversed besides a streamline (co characteristic) 

by two more characteristics (the C* and c- characteristics, or the first and second set 

characteristics). As implied by (2.1), the latter are, as in the plane and axisymmetric cases, 

at the Mach angle a = arcsin(l/M) to the streamlines. If fl = ctgcz = 1/M”- 1, the last state- 

ment with the so-called compatibility condition is expressed by equations of the form 

Dfi@ Bl;z!cf 
or=yv J&+g+ #$gY,f (;g (F,+@,)=O (2.2) 

where D*‘lDx are operators of total differentiation with respect to x along a characteristic, 

and the upper (lower) signs correspond to the c+- (cm-) characteristic. The first of equalit- 

ies (2.2) defines the direction of characteristics; the second represents compatibility con- 

ditions which differ from the respective conditions for the axisymmetric flow by the substitu- 

tion of u) for v and in the form of free terms. 

3. When the gas flows in an axisymmetric annular duct and the lack of axial symmetry in 

the stream is due only to small unsteady perturbations, it is expedient to use variational 

equations obtained by the linearization of (1.11). We denote parameter variations by u',W',.. 

and their steady values by U, W, . . . . The latter satisfy the system obtained in this case from 

(1.11) and (2.1) by rejecting derivatives with respect t and 'p. The obtained system is in- 

tegrable in quadratures and yields the following fairly obvious relations: 

RUF = const, 2Z + lJ* + W2 = const, r G yW = const, S = conat (3.1) 

where, unlike in Sect.2, I is not the total enthalpy but the fixed value of specific enthalpy. 

For a duct of specified shape, i.e. for given F = F(z) and y = y (4, formulas (3.1) together 
with the equations of state and conditions at the in- and outlet of the duct,whichdetermine 

the constants, make it possible to determine the distribution of all steady state parameters 

of the stream with respect to X. We define u", . . . by the equalities 

u = cr(1 + u'), p = P (1 + p”), p = R (1 + p”), w = W + u? (3.2) 

substitute (3.2) into (l.ll), and carry outlinearization. Restricting further analysis to 

perfect gas with the adiabatic exponent x, and omitting henceforth the superscript "o", de- 
note by T, 1,~ and s the following combinations of perturbations: 

2r=u+&, 21=-u--&, y=yw, s=p-np (3.3) 
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in which M = UIA is the Mach number determined by the steady J -component of velocity u 

and the speed of sound A. We call the combinations (3.3) perturbations of the right and 
left Riemann invariants of circulation and entropy. The equations which they satisfy can be 
represented as 

(3.4) 

w dlny 
a13=a2s=uyT1 

u (WZ $- x) 
aI4 = as4 = 2% (M2 _ 1) Ms 

In this case the possible discontinuity surfaces (compression shocks) are close to planes 
x = const. Hence it is convenient to represent the equations of any of them in the form 

z (6 VP) = X, + 6 (C rp), where X, is the fixed coordinate of the shock, and 6 (t, 'F) is small in 
comparison with a characteristic dimension of the problem such as, for instance, the duct 
length. If the oncoming supersonic stream is free of perturbations (z <X,) the linearization 

of (1.9) yields the following relations (refraction laws): 

r+=J",&++ &X6, s+=h,,l+ + h,$6; 61 + WY-'& = hbil, + h%,% v+ = h,b& (3.5) 

h =(1-22M+)M-2+1 (I-,Y)N-- x (1 - h.,,) (1 - 1') x [M, (N - 1) i,, - E] 
?I (1 + 2M+) M-2 + 1 ’ “a = [(I + ?M+) M. * + 11 M, ’ ‘,I = M+M_2 , &b= 3 

Lb1 = 
i- M+ - (I+ M+) XT1 u (1 i M+) kr, 

(K-‘)M+ 
m1 x66= (I _ K, M+ -I 

I 
tie 

h,b = K - I, K = U_ t u,, N = M_2M+2, E = (x - 1) (1!4+~ - M_?) 1 (x f 1) 

which must be satisfied for 5 =X,. In these formulas St = 86 I at, 6, = 8 I@ and h,[, h,,, 

have the meaning of coefficients of interaction. 

ft. Let us show how the developed here methods and equations can be used in the analysis 

of fairly complex unsteady flows. We begin by applying the theory derived in Sect.3 to the 

investigation of an unsteady stream in an annular duct of variable cross section area with 

Fig.2 

supersonic flow at the inlet (s-(I), a closing shock inside the 

channel, and subsonic veiocity at the outlet cross section (z= 1). 

As in the derivation of (3.5), we assume the absence of perturbations 

at the duct inlet, and that the unsteadiness is due to pressure 

perturbations that are nonuniform with respect to q and finite with 

respect to t at z=l. The latter was specified by the formula ~,(t, 

9) = ET (t)Q (VP), where E is the oscillation amplitude, and functions 

T and Q are nonzero, respectively in the intervals O<t<o.s and 

-zn/<rp<n/2. T and Q are here of the form ofisoscelestriangles 

of unit height and the unit of time is the ratio of the duct length 

to the critical velocity of steady flow. The steady flow is potent- 

ial, the Mach number at the inlet ,%I, : 1.4, the mean oridinate Y is 

a linear function of z with y, G y (0) = (I.5 , and Y, = 0.i. The distribu- 

tion of F along I was specified by a third power polynomial with 

minimum and maximum (F,/ F, = 2) at I = 0 and s-l, respectively. 

The shock fixed coordinate X, ~= (1.3. Since in the considered linear 

problem all perturbations are proportional to E, they are replaced 

below by quantities obtained from (3.3)- (3.5) for F = 1. 
The unknown functions r,1,... are periodic in v and in terms of 

Fourier integrals periodic in t. For r, 6, and p1 we have 
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The equations for the determination of spectral densities R, L, A,. . are obtained from 

(3.4) and (3.5), and, in conformity with (3.3) and the last of equalities (4.1), the boundary 

condition at z= 1 is of the form 

L, = RI - P, I xM, 

where the second expression for F, takes into account the dependence of A1 on t and cp select- 

ed above. 

In the algorithm constructed by the authors spectral density was determined with the use 

of beforehand calculated transfer functions ("frequency characteristics") A6 (n,~), A'(z,n,o), 

that correspond to P, (t, q) = exp i(nq + of). By virtue of the problem linearity A',A',... define 

all spectral densities in terms of R, by equalities of the type R =ArP1. Transfer functions 

were determined by a method close to that described in /l/. Without dwelling on some un- 

important differences (such, as for instance, dependence on r$ and, consequently, on n was not 

considered), we point out the following. Within fairly wide (from the point of view‘of accur- 

acy of subsequent determination of r,Z,...) range of n and o, their calculation on a computer 
using a FORTRAN program takes less than 10 min. The subsequent determination of flow for the 

chosen above ~,(t,r~~p) took approximately 5 min. Some of the results of these calculations are 

shown in Figs. 2-4 by solid lines. All subsequent calculations are for x = 1.4. 

Fig.4 
Fig.3 

The dependence of A = 1~~1 on n and o are shown in Fig.2, where the numbers at curves 

denote values of n: the frequency o relates to the steady critical velocity divided by the 

duct length. It can be seen that A decreases as n is increased at considerable o ; moreover 
A decreases (in some neighborhood of o = 0) also with decreasing o. When n#O the nature 

of the latter effect is associated with that for 0 < o* (n). where Q is the so-called 

"critical" frequency or"cut-off" frequency /2,3/, solutions of the "travelling wave" type do 

not exist. It can be shown that in that case o. =Anl/l-MS/y. The dash-line curves in Fig. 

2 represent the similar relations for the original duct to which a cylindrical section of unit 

length has been added at its right-hand end. As expected, this virtually did not affect the 

right-hand (descending) branches of curves, diminished A for o-Co*, and increased the 

curvature of A growth sections lying near w=o*, when n#O. When n=O, lengthening 
of the duct had increased The "resonance" peak at low o. 

Oscillaograms of pressure perturbation at the shock cross section are shown in Fig.3, 

where the numbers at curves indicate values of 'p, and the dot-line triangles represent 
perturbing pressure pulses at.the duct outlet. Oscillograms obtained by substituting some 

uniform distributions of PI=PI (t) for perturbations nonuniform with respect to 'p _ The dash 

line corresponds to p, = T(~)@(O) and illustrates the effect of lateral "creep" of perturbations. 
This effect is, however, not total, as shown by the dash-dot line which corresponds to P, = 

T(t)*. In this case 3 = 0.25 is the value obtained by averaging with respect to Cp. Similar 

conclusions are implied by the oscillograms of variation of the shock coordinate (Fig.4). 

Let us demonstrate now the possibilities provided by the numerical algorithm which, un- 
like the previous one, is based on the nonlinearized equations (1.6) and (1.8), and is intend- 

ed for calculating unsteady flows with shock waves that are essentially nonuniform with respect 

to J and '6. An idea of one of such ducts is given in Fig.5 in which the "development" of the 

calculated region 0 = r/d9 for s=cor~st in variables ~'1 is plotted, with isobars, and the 
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a 
Fig.5 

b 

boundary g, shown by a heavy line. The condition of impermeability ml li = ydi@l dz, where 
'p = @Pez) is the equation of &,, was imposed on g,.. Isobars were calculated at intervals 
Ap = 0.05. The numbers near some of them represent pressures normalized with respect to pea*2 

which represent the critical density and velocity, respectively, of the steady stream at the 
duct inlet. The investigated configuration was obtained by the "truncation" of the axisym- 

metric annular duct which differed from the one described above only by the quantities y,!x .- 
0.1 and y, =O.Ol. It had two-sector inlets and a common annular outlet. Computations were 
carried out by Godunov's method /4/ without separation of discontinuity surfaces. The data 
presented below were obtained using a grid of 60 mesh on z and 30 on 'p, and the FORTRAN 

computer program. Computation up to t- I.5 (time normalized as previously) took approximately 
1.5 hours of computer time. Isobars were constructed using a specially devised program for 

computing isolines. Initial steady parameter fields for a steady supersonic stream at the 

inlet (axial flow at M,= 1.4) and pressure p1 7 1.07 constant with respect to c~ at the outlet, 

were established in terms of t in the course of the computation process. As previously, clos- 
ing shocks appeared in the duct. They are shown in Fig.5 by the isobars bunching zone. 

After the steady parameter distribution was established, various perturbations were fed 

at the inlet or outlet, which imitated the arrival at the "lower" inlet branch (so called 

because of its position in Fig.5) of a shock wave or contact discontinuity and, also, of 

rotation in the impermeable outlet sector. In spite of fairly strong (perturbation) effects 

the flow, as a rule was not destroyed and remained stable. This agrees with the results of 

analysis in /3-88/. 
The isobars shown in Fgi.5 relate to the problem of feeding to the lower duct branch 

of perturbations specified by formulas X(t) := XS" (t) + XO II -~ a (t)l , where % is any parameter and 

X0 and Xs are, respectively, its steady value and the value behind the shock wave which moves 

downstream at the relativevelocity 1_2a,.ForO<t<lfunction a(t)=l-t and fort-,litvanishes. The time 

reference point was, as previously, set at the instant of the shock arrival to the cross 

section at *=(I. Pressure at z)- I was maintained constant at p,= 1.07 throughout the process. 

At instant ~~0.5 (Fig.5,a) the closing shock in the upper branch has not yet "felt" the 

perturbation that has reached the lower branch. In Fig.S,b (t-1.3) the stream is perturbed 

throughout the subsonic part of the duct, andtheuppershock shifts to the left. However by 

then there are already no perturbations to the left of the lower shock. The data in Fig.5 

show that the developed here mathematical model and algorithm make possible operational 
numerical experimentation with unsteady flows in ducts of fairly complex shapes. 
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